Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.

Identifieur interne : 002F40 ( Main/Exploration ); précédent : 002F39; suivant : 002F41

Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.

Auteurs : Delphine Gendre [Suède] ; Jaesung Oh ; Yohann Boutté ; Jacob G. Best ; Lacey Samuels ; Robert Nilsson ; Tomohiro Uemura ; Alan Marchant ; Malcolm J. Bennett ; Markus Grebe ; Rishikesh P. Bhalerao

Source :

RBID : pubmed:21512130

Descripteurs français

English descriptors

Abstract

Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.

DOI: 10.1073/pnas.1018371108
PubMed: 21512130
PubMed Central: PMC3093476


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.</title>
<author>
<name sortKey="Gendre, Delphine" sort="Gendre, Delphine" uniqKey="Gendre D" first="Delphine" last="Gendre">Delphine Gendre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå</wicri:regionArea>
<wicri:noRegion>S-901 83 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oh, Jaesung" sort="Oh, Jaesung" uniqKey="Oh J" first="Jaesung" last="Oh">Jaesung Oh</name>
</author>
<author>
<name sortKey="Boutte, Yohann" sort="Boutte, Yohann" uniqKey="Boutte Y" first="Yohann" last="Boutté">Yohann Boutté</name>
</author>
<author>
<name sortKey="Best, Jacob G" sort="Best, Jacob G" uniqKey="Best J" first="Jacob G" last="Best">Jacob G. Best</name>
</author>
<author>
<name sortKey="Samuels, Lacey" sort="Samuels, Lacey" uniqKey="Samuels L" first="Lacey" last="Samuels">Lacey Samuels</name>
</author>
<author>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
</author>
<author>
<name sortKey="Uemura, Tomohiro" sort="Uemura, Tomohiro" uniqKey="Uemura T" first="Tomohiro" last="Uemura">Tomohiro Uemura</name>
</author>
<author>
<name sortKey="Marchant, Alan" sort="Marchant, Alan" uniqKey="Marchant A" first="Alan" last="Marchant">Alan Marchant</name>
</author>
<author>
<name sortKey="Bennett, Malcolm J" sort="Bennett, Malcolm J" uniqKey="Bennett M" first="Malcolm J" last="Bennett">Malcolm J. Bennett</name>
</author>
<author>
<name sortKey="Grebe, Markus" sort="Grebe, Markus" uniqKey="Grebe M" first="Markus" last="Grebe">Markus Grebe</name>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21512130</idno>
<idno type="pmid">21512130</idno>
<idno type="doi">10.1073/pnas.1018371108</idno>
<idno type="pmc">PMC3093476</idno>
<idno type="wicri:Area/Main/Corpus">002E37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E37</idno>
<idno type="wicri:Area/Main/Curation">002E37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E37</idno>
<idno type="wicri:Area/Main/Exploration">002E37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.</title>
<author>
<name sortKey="Gendre, Delphine" sort="Gendre, Delphine" uniqKey="Gendre D" first="Delphine" last="Gendre">Delphine Gendre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå</wicri:regionArea>
<wicri:noRegion>S-901 83 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oh, Jaesung" sort="Oh, Jaesung" uniqKey="Oh J" first="Jaesung" last="Oh">Jaesung Oh</name>
</author>
<author>
<name sortKey="Boutte, Yohann" sort="Boutte, Yohann" uniqKey="Boutte Y" first="Yohann" last="Boutté">Yohann Boutté</name>
</author>
<author>
<name sortKey="Best, Jacob G" sort="Best, Jacob G" uniqKey="Best J" first="Jacob G" last="Best">Jacob G. Best</name>
</author>
<author>
<name sortKey="Samuels, Lacey" sort="Samuels, Lacey" uniqKey="Samuels L" first="Lacey" last="Samuels">Lacey Samuels</name>
</author>
<author>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
</author>
<author>
<name sortKey="Uemura, Tomohiro" sort="Uemura, Tomohiro" uniqKey="Uemura T" first="Tomohiro" last="Uemura">Tomohiro Uemura</name>
</author>
<author>
<name sortKey="Marchant, Alan" sort="Marchant, Alan" uniqKey="Marchant A" first="Alan" last="Marchant">Alan Marchant</name>
</author>
<author>
<name sortKey="Bennett, Malcolm J" sort="Bennett, Malcolm J" uniqKey="Bennett M" first="Malcolm J" last="Bennett">Malcolm J. Bennett</name>
</author>
<author>
<name sortKey="Grebe, Markus" sort="Grebe, Markus" uniqKey="Grebe M" first="Markus" last="Grebe">Markus Grebe</name>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (cytology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Compartmentation (drug effects)</term>
<term>Cell Compartmentation (genetics)</term>
<term>Cell Compartmentation (physiology)</term>
<term>Cell Shape (genetics)</term>
<term>Cell Shape (physiology)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Macrolides (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Vesicular Transport Proteins (genetics)</term>
<term>Vesicular Transport Proteins (metabolism)</term>
<term>trans-Golgi Network (metabolism)</term>
<term>trans-Golgi Network (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Arabidopsis (cytologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Compartimentation cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Compartimentation cellulaire (génétique)</term>
<term>Compartimentation cellulaire (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Forme de la cellule (génétique)</term>
<term>Forme de la cellule (physiologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Macrolides (pharmacologie)</term>
<term>Mutation (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines du transport vésiculaire (génétique)</term>
<term>Protéines du transport vésiculaire (métabolisme)</term>
<term>Réseau trans-golgien (métabolisme)</term>
<term>Réseau trans-golgien (ultrastructure)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>DNA, Plant</term>
<term>Vesicular Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Compartmentation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Compartimentation cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Cell Compartmentation</term>
<term>Cell Shape</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Arabidopsis</term>
<term>Compartimentation cellulaire</term>
<term>Forme de la cellule</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines du transport vésiculaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Saccharomyces cerevisiae</term>
<term>Vesicular Transport Proteins</term>
<term>trans-Golgi Network</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines du transport vésiculaire</term>
<term>Réseau trans-golgien</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Macrolides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Macrolides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Compartimentation cellulaire</term>
<term>Forme de la cellule</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Compartmentation</term>
<term>Cell Shape</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>trans-Golgi Network</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Evolution, Molecular</term>
<term>Genes, Plant</term>
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Mutation</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Réseau trans-golgien</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Test de complémentation</term>
<term>Végétaux génétiquement modifiés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21512130</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.</ArticleTitle>
<Pagination>
<MedlinePgn>8048-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1018371108</ELocationID>
<Abstract>
<AbstractText>Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gendre</LastName>
<ForeName>Delphine</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Jaesung</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boutté</LastName>
<ForeName>Yohann</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Best</LastName>
<ForeName>Jacob G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samuels</LastName>
<ForeName>Lacey</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nilsson</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uemura</LastName>
<ForeName>Tomohiro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marchant</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bennett</LastName>
<ForeName>Malcolm J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grebe</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhalerao</LastName>
<ForeName>Rishikesh P</ForeName>
<Initials>RP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/G023972/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000592612">ECHIDNA protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018942">Macrolides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033921">Vesicular Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>80890-47-7</RegistryNumber>
<NameOfSubstance UI="C036978">concanamycin A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002451" MajorTopicYN="N">Cell Compartmentation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048430" MajorTopicYN="N">Cell Shape</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018942" MajorTopicYN="N">Macrolides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033921" MajorTopicYN="N">Vesicular Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021601" MajorTopicYN="N">trans-Golgi Network</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21512130</ArticleId>
<ArticleId IdType="pii">1018371108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1018371108</ArticleId>
<ArticleId IdType="pmc">PMC3093476</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Biol. 2002 May;205(Pt 9):1209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11948198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2009 Jun;212(Pt 11):1604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2007 Feb 15;313(4):688-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17178117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jan 24;112(2):219-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 19;13(16):1378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12932321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Nov;12(11):2201-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1088-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(5):865-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Dec 15;117(Pt 26):6377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 3;20(17):4730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1558-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17812-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Apr 1;419(1):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 25;277(43):40544-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):1070-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):78-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2008 Feb;40(1):53-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18214654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):466-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jul 1;21(13):1598-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17578906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1454-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18678738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Feb;8(2):124-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2005 Dec;37(6):431-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16691478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Feb;112(4):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1993733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 14;276(50):47411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9920-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 May 25;276(21):17941-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Aug;20(4):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Oct 12;20(19):1697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20888232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1344-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):715-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1514-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1212-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1993 Nov;106 ( Pt 3):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jul;11(7):2251-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):101-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18239134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jun;54(387):1577-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bennett, Malcolm J" sort="Bennett, Malcolm J" uniqKey="Bennett M" first="Malcolm J" last="Bennett">Malcolm J. Bennett</name>
<name sortKey="Best, Jacob G" sort="Best, Jacob G" uniqKey="Best J" first="Jacob G" last="Best">Jacob G. Best</name>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
<name sortKey="Boutte, Yohann" sort="Boutte, Yohann" uniqKey="Boutte Y" first="Yohann" last="Boutté">Yohann Boutté</name>
<name sortKey="Grebe, Markus" sort="Grebe, Markus" uniqKey="Grebe M" first="Markus" last="Grebe">Markus Grebe</name>
<name sortKey="Marchant, Alan" sort="Marchant, Alan" uniqKey="Marchant A" first="Alan" last="Marchant">Alan Marchant</name>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
<name sortKey="Oh, Jaesung" sort="Oh, Jaesung" uniqKey="Oh J" first="Jaesung" last="Oh">Jaesung Oh</name>
<name sortKey="Samuels, Lacey" sort="Samuels, Lacey" uniqKey="Samuels L" first="Lacey" last="Samuels">Lacey Samuels</name>
<name sortKey="Uemura, Tomohiro" sort="Uemura, Tomohiro" uniqKey="Uemura T" first="Tomohiro" last="Uemura">Tomohiro Uemura</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Gendre, Delphine" sort="Gendre, Delphine" uniqKey="Gendre D" first="Delphine" last="Gendre">Delphine Gendre</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21512130
   |texte=   Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21512130" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020